Parallel Programming with DASK on CPU
SDSC Expanse Notebook: Parallel_Programming
This README file provides instructions for Expanse users to run Parallel_Programming notebooks in the Expanse.
Introduces the Dask module with a simple example and illustrates the Dask graph.
Listof Content
Import Module:
- dask
- mkl
- da
- numpy
Launch Galyleo
For specific information about launching Galyleo, please refer to this GitHub repository.
Environment Modules
By utilizing --env-modules, we can load any software installed in Expanse.
For instance, executing this command line will load CPU modules and Anaconda3 within the Jupyter session.
- CPU:
--env-modules cpu/0.17.3b,anaconda3galyleo launch --account abc123 --partition shared --cpus 2 --memory 4 --time-limit 00:30:00 --env-modules cpu/0.17.3b,anaconda3/2021.05Also this command line loads GPU modules and Anaconda3 in the Jupyter session to run in a GPU environment.
- GPU:
--env-modules gpu/0.17.3b,anaconda3/2021.05galyleo launch --account abc123 —partition gpu-shared --cpus 10 --memory 92 --gpus 1 --time-limit 00:30:00 --env-modules gpu/0.17.3b,anaconda3/2021.05 --bind /oasis,/scratch --nvInstall Modules
To run Parallel_Programming notebooks, we do not need to install any additional packages.
Location
Parallel_Programming
├── dask_graphs.ipynb
├── multithreaded_processing.ipynb
├── README.md
Submit Ticket
This notebook was last tested on 3/31/25. If you find anything that needs to be changed, edited, or if you would like to provide feedback or contribute to the notebook, please submit a ticket by contacting us at:
Email: consult@sdsc.edu
We appreciate your input and will review your suggestions promptly!
Enjoy Reading This Article?
Here are some more articles you might like to read next: