Parallel Programming with DASK on CPU

SDSC Expanse Notebook: Parallel_Programming

This README file provides instructions for Expanse users to run Parallel_Programming notebooks in the Expanse. Introduces the Dask module with a simple example and illustrates the Dask graph.
Listof Content

Import Module:

  • dask
  • mkl
  • da
  • numpy

Launch Galyleo

For specific information about launching Galyleo, please refer to this GitHub repository.

Environment Modules

By utilizing --env-modules, we can load any software installed in Expanse. For instance, executing this command line will load CPU modules and Anaconda3 within the Jupyter session.

  • CPU: --env-modules cpu/0.17.3b,anaconda3
    galyleo launch --account abc123 --partition shared --cpus 2 --memory 4 --time-limit 00:30:00 --env-modules cpu/0.17.3b,anaconda3/2021.05
    

    Also this command line loads GPU modules and Anaconda3 in the Jupyter session to run in a GPU environment.

  • GPU: --env-modules gpu/0.17.3b,anaconda3/2021.05
    galyleo launch --account abc123 —partition gpu-shared --cpus 10 --memory 92 --gpus 1 --time-limit 00:30:00  --env-modules  gpu/0.17.3b,anaconda3/2021.05 --bind /oasis,/scratch --nv
    

    Install Modules

    To run Parallel_Programming notebooks, we do not need to install any additional packages.

Location

Parallel_Programming
├── dask_graphs.ipynb
├── multithreaded_processing.ipynb
├── README.md

Submit Ticket

This notebook was last tested on 3/31/25. If you find anything that needs to be changed, edited, or if you would like to provide feedback or contribute to the notebook, please submit a ticket by contacting us at:

Email: consult@sdsc.edu

We appreciate your input and will review your suggestions promptly!




Enjoy Reading This Article?

Here are some more articles you might like to read next:

  • Hello_World CPU
  • Parallel Programming with DASK on GPU
  • Hello_World GPU
  • Decision Trees
  • Graphs & Networks